O.P.Code: 16CE113

R16

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations May/June-2024 HYDRAULICS & HYDRAILIC MACHINERY

-	(Civil Engineering)			
T	ime: 3 Hours	Max.	Mar	ks: 60
_	(Answer all Five Units $5 \times 12 = 60 \text{ Marks}$) UNIT-I			
1	of the diameter of a channel of circular cross-section for maximum discharge.	CO1	L1	12M
2	The discharge of water through a rectangular channel of width 8m, is15m3/sec. When the depth of flow of water is 1.2m. calculate: (i) specific energy of the flowing water (ii) critical depth and critical velocity (iii) value of minimum specific energy.	CO1	L3	12M
3	What are assumptions of gradually varied flow? Derive the Dynamic equation of gradually varied flow	CO2	L2	12M
4	What is hydraulic jump and derive the expression for depth of hydraulic	600		
•	jump.	CO ₂	L2	12M
	UNIT-III			
5	Derive the expression for force exerted by a jet on stationary curved plate if jet strikes the curved plate at the Centre and at one end. OR	CO3	L3	12M
6	Derive th expression for force exerted by a jet of water on an unsymmetrical moving curved plate when jet strikes tangentially at one of the tips and explain the velocity triangles at inlet &oulet and also efficiency of the jet	CO3	L3	12M
7	A Kaplan turbine runner is to be designed to develop9100KW.Th net available head is 5.6 m, If the speed ratio =2.09, Flow ratio =0.68, overall efficiency=86%& diameter of th boss is 1/3 the diameter of the runner. Find the diameter of the runner and its speed and the specific speed of the turbine	CO4	L4	12M
•	OR			
8	What is a turbine and give the classification in detail? Give the various efficiencies. Explain Radial flow reaction turbine with a neat diagram. UNIT-V	CO4	L3	12M
9	What is centrifugal pump? Explain the parts of centrifugal pump and derive the condition for workdone	CO5	L2	12M
10	A three stage centrifugal pump has impeller 40 cm in diameter and 2 cm wide at outlet. The vanes are curved back at the outlet at 450 and reduce the circumferential area by 10%. The manometric efficiency is 90% and overall efficiency is 80%. Determine the head generated by the pump when	CO5	L4	12M
	running at 1000r.p.m. delivering 50 litres per second. What should be the shaft horse power?			
	*** END ***			